2x^2+x^2=320^2

Simple and best practice solution for 2x^2+x^2=320^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+x^2=320^2 equation:



2x^2+x^2=320^2
We move all terms to the left:
2x^2+x^2-(320^2)=0
We add all the numbers together, and all the variables
3x^2-102400=0
a = 3; b = 0; c = -102400;
Δ = b2-4ac
Δ = 02-4·3·(-102400)
Δ = 1228800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1228800}=\sqrt{409600*3}=\sqrt{409600}*\sqrt{3}=640\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-640\sqrt{3}}{2*3}=\frac{0-640\sqrt{3}}{6} =-\frac{640\sqrt{3}}{6} =-\frac{320\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+640\sqrt{3}}{2*3}=\frac{0+640\sqrt{3}}{6} =\frac{640\sqrt{3}}{6} =\frac{320\sqrt{3}}{3} $

See similar equations:

| a=3(4+2*4) | | 4x2+40x+64=0 | | -8.3h+15.29+17.7h=9.4+15.29 | | 1120=(18-2x)(24-2x)2x | | 8k-8/4=0 | | 90+y=450 | | b2+4b+4=0 | | 90+x=450 | | w+10=4w-8-6w | | -4c-8=-3c | | 122-y=225 | | -g+8=g | | 3z+2(z-5)=35 | | 2x^2+x^2=320 | | Z2+18z+17=0 | | -6c=1-6c | | -u+229=99 | | 0.5^x+0.7^x=1 | | 251=-y+138 | | 251=-y | | 4.5q-5.9-5.79q=-2.2q-2.6 | | Y=x*x+7x+14 | | ?x(8+6)=42 | | Y=xXx+7x+14 | | Y=x2+7x+14 | | (v+6)(v-7)=0 | | 3x+2x+7=10x=-16 | | 4-a=4a+12 | | 9x+1/49=x+5/14 | | 10w+3=4w-9 | | 90=x+(3x-6) | | –50=–10+8h |

Equations solver categories